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Game Theory and Reinforcement Learning Based
Secure Edge Caching in Mobile Social Networks

Qichao Xu , Zhou Su , and Rongxing Lu

Abstract— Edge caching has become one of promising tech-
nologies in mobile social networks (MSNs) to proximally pro-
vide popular contents for mobile users. However, since caching
contents inevitably consume resources (e.g., power, bandwidth,
storage, etc.), edge caching devices maybe selfish to cheat the
content provider for earning service fees. In addition, due to the
open access of edge caching devices, the edge caching service is
vulnerable to various attacks, such as man-in-the-middle attack
and content tamper attack, etc., resulting in the degradation
of content delivery performance. To efficiently tackle the above
problems, in this paper, we propose a secure edge caching
scheme for the content provider and mobile users in MSNs.
Specifically, we first develop a secure edge caching framework
consisting of the content provider, multiple edge caching devices,
and some mobile users. To motivate the participation of edge
caching devices, Stackelberg game is exploited to model the
interactions between the content provider and edge caching
devices. The content provider serves as the game-leader to
determine the payment strategy of secure caching service and
each edge caching device is the game-follower to make the
strategy on the quality of secure caching service. Especially,
the zero payment mechanism is adopted to suppress the selfish
behaviors of edge caching devices. Apart from this, for lack of the
knowledge on interactions between the content provider and edge
caching devices in dynamic network scenarios, we also employ
the Q-leaning to derive the optimal payment strategy of the
content provider and the security strategy of edge caching device.
Extensive simulations are conducted, and results demonstrate
that the proposed scheme can efficiently motivate edge caching
devices to provide the content provider and mobile users with
high-quality secure caching services.

Index Terms— Mobile social networks (MSNs), secure edge
caching service, Stackelberg game, reinforcement learning, zero
payment punishment.

I. INTRODUCTION

W ITH the rapid advances of wireless communication
technologies and smart devices (e.g., iPad, iPhone,
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etc.), mobile social networks (MSNs) have been pushed
forward to provide ubiquitous convenient services includ-
ing content sharing, delivery and exchange among mobile
users [1]–[3]. Therewith, due to the proliferation of mobile
phones and the dramatic growth of mobile users, the wireless
data traffic in the network is expected to exponentially increase
in the next few years. Related report [4] shows that the
amount of global mobile data traffic in 2021 will reach to be
sevenfold over that in 2015. Especially, there is an evidence
that mobile multimedia contents will account for the major part
of whole data traffic over cellular networks. Besides, there are
numerous repeated requests of popular contents from mobile
users, resulting in the redundant content transmission over
backhaul networks with consuming a large amount of power
and bandwidth. Meanwhile, as the content provider is located
at remote area, it brings a large delivery latency in transmitting
a desired content over backbone network for mobile users.
Obviously, if the contents can be obtained locally from local
places, mobile users’ quality of experience (QoE) could be
significantly improved [5], [6].

Edge caching, as a promising trend, can efficiently provide
proximal caching services for mobile users, as a large number
of caching-enabled intelligent devices are deployed at the
edge of network and are close to mobile users [7]. The
advantages brought by the edge caching devices are threefold
[8], [9]. Firstly, as popular contents are stored close to mobile
users when cached on edge caching devices, the transmission
latency is extremely reduced. Secondly, the repeated requests
of mobile users can be met by nearby edge caching devices,
so that redundant content transmissions over cellular cells’
backhaul links are significantly mitigated. Thirdly, the majority
of data traffic is offloaded from overload cells to edge caching
devices for realizing the high data rate. Overall, as the
edge caching device is capable of content caching at the
edge of network, all mobile users, content providers, and
network operators are beneficiaries from the applications of
edge caching [10].

However, the full deployment of edge caching devices in
MSNs faces many challenges ahead. Specifically, the self-
ishness and open-access features of edge caching devices
have severe effects on the content transmission for mobile
users [11]–[13]. Indeed, edge caching devices are owned
and deployed by rational third parties, who might be selfish
to cheat content provider and provide mobile users with
fake or forged contents for maximizing their individual profits.
In addition, since edge caching devices are openly accessed,
arbitrary mobile user could connect to edge caching devices
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freely. As such, the applications with edge caching are vul-
nerable to the various attacks [14]–[17] (e.g., man-in-middle
attack [15], DDoS attack [18], etc.) conducted by malicious
entities in the networks, where the network performance is
seriously degraded. Accordingly, edge caching devices may be
compromised to tamper, remove, and replace cached contents,
resulting in that mobile users cannot obtain requested contents
and even receive malicious data, such as virus, malware, etc.
Therefore, it is pressing to motivate edge caching devices to
provide high-quality secure caching services for the content
provider and mobile users.

Especially, with the ever-increasing popularity of smart-
phones and wireless applications, the number of mobile users
in a community becomes larger and the required contents are
more various than before. Due to the limitation of resources
(e.g., bandwidth, energy, etc.), not all mobile users in the
community can obtain the satisfied QoE on content delivery,
i.e., they have to compete for resources and may not acquire
the required contents in time [19]. As such, the content
delivery performance urgently needs to be improved for the
community [20]. Edge caching as a promising technique can
efficiently improve the performance of content delivery in
the community [21]. A large number of mobile users in
the community have similar content interests and usually
require the same content. If the content is cached on the edge
caching devices, these mobile users can obtain the content
from edge caching devices directly. However, due to the
rationality of edge caching devices, they may be selfish to
cheat the content providers for caching fees. In addition,
by considering the diversity of mobile users, malicious mobile
users may exist to attack the edge caching devices [18], [22].
Therefore, the secure caching scheme should be devised to
tackle these security issues to further improve the content
delivery performance for the community.

Game model is an efficient tool to formulate the content
caching and provide approaches such as auction, pricing, and
reputation mechanism as regard of stimulating edge caching
device to contribute content caching. For example, in [23],
auction based content caching is used to allocate edge caching
resource to mobile users for improving the mobile users’ QoE
by paying the edge caching device who bids the lowest price.
Besides, a commercialized edge caching scheme is proposed
in [24], where the interactions between the content provider
and edge caching devices are formulated as a Stackelberg
game to jointly maximize the average profit of both the con-
tent provider and edge caching devices. Meanwhile, in [25],
the reputation mechanism is used to evaluate the reliability
of edge caching devices on providing caching service to
mobile users. However, most of the current works with game
theory do not have enough consideration that the selfish edge
caching devices may cheat content provider and mobile users
to gain profits. In addition, different from the assumption in the
existing works, the parameters of network model and caching
model for caching services are not readily available by content
provider and edge caching devices. A learning based scheme
without relying on the knowledge of network parameters is
needed. Therefore, it is still an open and vital issue to provide
mobile users with secure content caching services.

In this paper, we propose a novel secure edge caching
scheme to provide high-quality caching services for the con-
tent provider and mobile users. Specifically, to motivate the
participation of edge caching devices, the interactions between
the content provider and multiple edge caching devices are
formulated based on the one-leader and multiple-followers
Stackelberg game. The leader of the game is the content
provider to cache contents on edge caching devices for
securely delivering contents to mobile users and determine
the optimal payment strategy to maximize its utility. After
the content provider broadcasts the payment strategy, each
edge caching device makes the strategy on the optimal quality
of secure caching service to provide caching service for the
content provider, and then obtains profit based on the payment
strategy and the provided quality of secure caching service
afterwards. Especially, the selfish edge caching devices that
deliver fake contents are punished with zero payment mech-
anism to suppress their self-interest consciousness. Besides,
for lack of the knowledge on interactions between the content
provider and edge caching devices in dynamic network sce-
narios, the interaction process is formulated as a finite Markov
decision process (MDP). The content provider can employ the
Q-learning to decide the optimal payment strategy based on
the observations of the qualities of secure caching services
provided by edge caching devices with different payment
strategies. Meanwhile, each edge caching device applies the
Q-learning to achieve the optimal quality of secure caching
service strategy based on the observations of the payment from
the content provider. The main contribution of this paper is
threefold.

• Game Based Interaction Modelling. We formulate the
interactions between the content provider and multi-
ple edge caching devices as a Stackelberg game and
analyze the Stackelberg equilibrium (SE) of the static
Stackelberg game with the interaction as the optimal
strategies to maximize the utilities of all players. Each
edge caching device is stimulated to provide high-quality
secure caching service and the selfishness of edge caching
device is suppressed.

• Q-learning Based Optimal Strategy Decision. We apply
the Q-learning to obtain the optimal payment strategy for
the content provider and the quality of secure caching
service of each edge caching device via trial and error
with high learning rate in dynamic network that lacks
sufficient knowledge on the interactions between the
content provider and edge caching devices.

• Extensive Simulations Based Performance Evaluation.
We evaluate the performance of the proposed scheme
with extensive simulations. The simulation results show
that the proposed scheme can efficiently motivate edge
caching devices to provide high-quality secure caching
services for the content provider and mobile users.

The remainder of the paper is organized as follows.
Section II reviews the related works. Section III introduces
the system model. The problem formulation is presented in
Section IV. The optimal strategy for static Stackelberg game
is analyzed in Section V and the Q-learning based optimal
strategy decision is elaborated in Section VI. Section VII
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evaluates the proposed scheme and conclusion is provided in
Section VIII.

II. RELATED WORK

In this section, we first review the content delivery in MSNs
and then conclude the works of edge caching, reinforcement
learning and security for edge caching in wireless network.

A. Content Delivery in Mobile Social Networks

Recently, the content delivery in MSNs has been studied
widely. Wang et al. [26] introduced a comprehensive enhanced
secure instant messaging scheme, which can support denial of
replaying attack and denial of forgery attack, where an offline
key agreement process between users is developed by updating
the ephemeral key periodically. Wang et al. [27] studied the
opportunistic MSNs, where a dynamic trust framework is
proposed to facilitate a node to obtain a trust value of another
one and presented a two-hop feedback method to verify a
node’s honesty if they are two hops away. Li et al. [28]
presented a communication framework by studying two tightly
coupled issues, where a novel data forwarding algorithm is
proposed to route the message to other access points within
common connected components. Awuor et al. [29] proposed
a mechanism to motivate content sharing in mobile social
networks, which is based on the users’ collective bidding,
content cost sharing, and trust evaluation and proved that the
mechanism can ensure the trustworthiness of their encounters’
contents. Meng et al. [30] studied mobile communication
technology in MSNs and resented a high-level distributed
cooperative environmental state inference scheme, where users
can exchange information with their neighbors and coopera-
tively infer the hidden state. However, the existing works on
content delivery in MSNs should further consider the local
content services for mobile users.

B. Edge Caching in Wireless Networks

The edge caching in wireless networks has attracted much
attention from academia and industry. Jiang et al. [31] pro-
posed a device-to-device content caching mechanism through
a multi-agent reference learning approach to improve the cache
byte hit rate and decrease the average downloading latency.
To reduce congestion in the backhaul links in IP network
and minimize the delay to fetch contents from remote servers,
Chhangte et al. [32] presented a novel software defined net-
working based content caching prototype called Wi-Caching
in wireless local area network. Through joint optimizing
approaches for content caching, replica server placement,
and request load assignment, Xu et al. [33] developed a
mixed integer linear programming in content delivery networks
to improve the overall system performance. Liu et al. [34]
studied the joint content caching and computation offloading
in wireless blockchain networks via mobile edge comput-
ing technique, and the optimization problem is solved by
alternating direction method of multipliers based algorithm
in a distributed way. A novel cache-aided coded content
delivery mechanism in wireless networks was designed by
Yang and Gndz [35], which focuses on the heterogeneous dis-
tortion requirements of users in both centralized and decentral-
ized ways. However, to realize existing works on edge caching

in reality, the security preservation for contents cached on edge
caching devices should be further studied and resolved.

C. Reinforcement Learning in Wireless Network

Reinforcement learning as a typical model of machine
learning technology has been deeply applied in wireless
communication. Xiao et al. [36] studied the attack models
in mobile edge computing systems and proposed security
solutions to provide secure offloading to the edge caching
devices against jamming attacks. In particular, the lightweight
authentication and secure collaborative caching schemes were
introduced to protect the data privacy. Li et al. [37] focused on
the problem of spectrum sharing in a cognitive radio system,
and developed a deep reinforcement learning-based method
for the secondary user to share the common spectrum with
the primary user, where users can transmit their own data
successfully with required qualities of service. Shen et al. [38]
studied a number of image-processing problems, and a deep
reinforcement learning approach was developed to train a
system to adjust parameters automatically in a human-like
manner. Liu et al. [39] focused on the topic of robotic systems
with cloud computing, and a resource allocation scheme was
presented to make the cloud to decide whether a request should
be accepted and how many resources are supposed to be
allocated. Mahmud et al. [40] investigated the development
of dedicated data-intensive machine learning techniques, and
gave a comprehensive survey on the application of deep learn-
ing, reinforcement learning, and deep reinforcement learning
techniques in mining biological data. However, the reinforce-
ment learning on edge caching for security of contents needs
to be further analyzed.

D. Security for Edge Caching

The security for edge caching in wireless networks has been
widely studied. Araldo et al. [41] proposed an encrypted con-
tent caching scheme in which the network provider partitions
the caching space into slices and assigns slices to different
content providers. Tiburski et al. [42] designed a security
architecture that integrates trust mechanisms with embed-
ded virtualization, which can efficiently prevent unauthorized
access to cached contents on edge devices. Ma et al. [43] intro-
duced a blockchain-based trusted data management scheme for
edge caching to guarantee content trust and security, where a
flexible and configurable blockchain architecture is devised.
Dbouk et al. [44] proposed an ad-hoc mobile edge cloud
that utilizes Wi-Fi Direct as means of achieving connectivity,
sharing resources, and integrating security services among
nearby mobile devices to defend devices against malware and
other intrusions. Wu et al. [45] presented an edge-caching-
based content-aware filtering method for security services
in information-centric social networks, where the assessment
and content-matching mechanism is presented for security
services. Although the above works have made efforts on
secure caching, the selfishness and open access features of
edge caching devices and the diversified caching demands of
the content provider should be further taken into account when
devising the secure edge caching scheme.
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TABLE I

SUMMARY OF NOTATIONS

Fig. 1. An illustration of MSN model. The MSN is composed of a content
prover, multiple edge caching devices, and a mass of mobile users.

In this paper, different from existing works, the proposed
scheme studies the secure edge caching in MSNs. The self-
ishness and open-access feature of edge caching device are
considered to improve the security of content delivery. In addi-
tion, the Q-learning as a reinforcement mode is used to obtain
the optimal strategies of both the content provider and edge
caching devices in dynamic Stackelberg game, without the
whole knowledge of accurate network parameters.

III. SYSTEM MODEL

In this section, we introduce the system model including
network model, content model, and threat model

A. Network Model

In this paper, we consider a typical MSN model, as shown
in Fig. 1, which includes a content provider, multiple edge
caching devices, and some mobile users.

1) Content Provider: The content provider, denoted by o,
stores the original content files, where the copyrights of

the contents are bought from content producers. In order
to attract more users for potential benefits, the content
provider hopes that it can securely deliver the desired
popular contents to mobile users as soon as possible.
However, since the content provider is deployed at
some remote areas far away from mobile users, mobile
users have to retrieve contents with a long latency,
resulting in the degrading QoE of the content delivery.
To improve mobile users’ QoE, the content provider
has high willingness to securely cache contents on edge
caching devices with an acceptable payment.

2) Edge Caching Devices: Edge caching devices equipped
with the edge caching technology can provide caching
service for content provider and mobile users. Specif-
ically, an edge caching device is placed at the edge
of backhaul network between the content provider and
mobile users to provide proximate caching services for
mobile users. As such, if contents are cached on edge
caching devices, mobile users can retrieve the requested
contents with a short latency by accessing nearby edge
caching devices. For simplicity, to reduce the overlap-
ping coverage area among edge caching devices, each
edge caching device is placed at different locations such
as campus, hospital, etc. Each edge caching device has
a certain selfishness and open-access feature. The self-
ishness means that edge caching device cheats content
provider to gain profits, while this node does not cache
contents in its caching space and delivers fake contents
to mobile users. Open-access means that each edge
caching device can be accessed by any entities including
malicious parties, where cached contents may be tam-
pered, removed, and replaced due to attacks. To avoid
the negative effect of the open-access feature on content
caching, each edge caching device is also capable of
providing security mechanism to protect cached contents
for the content provider and mobile users. For instance,
edge caching device can employ disaster backup mode
to store multiple copies of contents at different places,
whereby the integrities and confidentialities of contents
can be preserved [14]. Let I = {1, 2, · · · i, · · · , I }
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denote the set of edge caching devices in the network.
By controlling the quality of secure caching service,
each edge caching server can execute different levels of
security mechanisms during content caching. The higher
the quality of secure caching service is, the higher the
level of the adopted security mechanism becomes. Here,
the quality of secure caching service from edge caching
device i for caching content m is denoted by qi,m , which
satisfies the following constraint condition:

qi,m =
�

−1, edge caching device i is selfish,

[0, 1], otherwise.
(1)

Here, qi,m = −1 represents that edge caching device
i is selfish and delivers fake contents to requesters.
qi,m = 1 is the highest quality of secure caching service
from edge caching device i and edge caching device
i provides low quality of secure caching service when
0 < qi,m < 1. If qi,m = 0, edge caching device i
does not participate in content caching for the content
provider and only forwards contents as a relay.

3) Mobile Users: In the network, mobile users require
contents from nearby edge caching devices. If contents
are cached on edge caching devices, the corresponding
contents are returned to mobile users directly with
negligible latencies. The random walk model is utilized
to describe mobile user’s mobility. The moving veloc-
ity of each mobile user is randomly in

�
Ṽmin, Ṽmax

�
.

The moving direction of each mobile user is randomly
in [0, 2π]. The time of a mobile user’s one moving
is randomly in [0, t̂max]. Besides, after moving, each
mobile user can stay at a location for a certain time. The
staying time of one mobile user is randomly in [0, τmax].
According to mobility model, the number of mobile
users within the coverage of each edge caching device
is variable over time. As such, the set of mobile users
within the coverage of edge caching device i at time
slot t is denoted as Ni (t) = �

ni,1, ni,2, · · · , ni,Ni (t)
�
,

where Ni (t) is the number of mobile users within the
coverage of edge caching device i at time slot t . Here,
mobile users can send experience reports about the
quality of secure caching service from associated edge
caching devices to the content provider and then the
content provider evaluates the qualities to pay for secure
caching services. For simplicity, it is assumed that the
content provider can accurately evaluate the quality of
secure caching service from edge caching devices. For
example, the content provider can deliberately launch
various different degrees of malicious attacks to an
edge caching device for evaluating the quality of secure
caching service, when contents are cached on the edge
caching device.

B. Content Model

Within the time period {1, 2, · · · , T }, a certain number of
contents are requested by mobile users. The set of contents in
time period {1, 2, · · · , T } is denoted as M = {1, 2, · · · ,M}.
The popularity distribution of contents M are represented by

vector f = [ f1, f2, · · · , fM ]. Here, each mobile user makes
an independent request of content m ∈ M, with a probability
of fm . With the descending order of requesting times during
a certain period (e.g., one day or one week), the popularity of
content m ∈ M is

fm =
�
(τ (m))γ

M�
m=1

m−γ
	−1

, (2)

where γ is a positive number to govern the skewness of the
popularity. The popularity is uniformly distributed when γ =
0. If γ is high, popular contents will account for the majority
of requests. τ (m) is the index of content m with the decreasing
order of requesting times among all contents. Eq. (2) implies
that content with a smaller index has a larger popularity.

In addition, the importance of different contents should be
considered. For example, a content is about the national eco-
nomic news generated by the national government department.
Another content is world cup news from a sport newspaper.
Although the world cup news is more popular than the
national economic news, the national economic news is more
important. The importance distribution among all contents is
denoted by p = [p1, p2, · · · , pM ], where pm represents the
importance degree of content m. The importance of a content
can be determined by the priority of the content source. For
example, the priority of the national government department is
higher than the sport newspaper. The importance distribution p
can be also modeled by the Zipf distribution. As such, we have

pm =
�
(κ(m))β

M�
m=1

m−β
	−1

, (3)

where β is a positive value for characterizing the importance
of the contents and κ(m) is the index of content m with the
decreasing order of the priority among all contents.

Apart from the popularity and importance, the requests
of mobile users within different edge caching devices are
different. For edge caching device i , the request distribution is
denoted by ri = [ri,1, ri,2, · · · , ri,M ], where ri,m is the ratio of
mobile users requesting content m within edge caching device
i . The number of mobile users who request content m from
edge caching device i is ri,m Ni , which can be seen as the
priority of the edge caching device. If a content is requested
by a large number of mobile users under an edge caching
device, this content has high priority to be cached.

C. Threat Model

There are two types of threats in the system to affect the
security of the caching services.

1) Selfishness of Edge Caching Devices: Since edge caching
devices are deployed by multiple rational third parties, they
may be selfish to cheat the content provider for caching service
fees, where fake or forged contents are delivered back to
content requesters.

2) Open Access of Edge Caching Devices: Since edge
caching devices can be accessed openly, malicious mobile
users can conduct several cyber-attacks (e.g., man-in-middle
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attack, black hole attack, etc). The cached contents are tam-
pered, removed or replaced, and the requesters cannot obtain
the desired contents from edge caching devices.

D. Design Goals

Our design goals have two desirable objectives as follows:
on one hand, our scheme should be effective to motivate
edge caching devices to provide high-quality secure caching
services for content provider and mobile users. On the other
hand, the content provider should be fast to find the optimal
payment strategy without the information of network model
and caching model parameters in dynamic network scenarios.

IV. PROBLEM FORMULATION

In the network, if the mobile user’s QoE is improved
with the high-quality secure caching services offered by edge
caching devices, the content provider can also gain profit
since it can attract more mobile users to request contents.
As such, both the content provider and mobile users can be
seen as the same interest group. For stimulating edge caching
devices to provide high-quality secure caching services and
suppressing edge caching devices’ selfishness, the content
provider chooses a payment strategy to award edge caching
devices’ contributions. Then, given payment strategy, each
edge caching device determines the quality of secure caching
service. Both the content provider and edge caching devices
aim to maximize their profits. The content provider hopes
that it can enjoy high-quality services with low payments,
whereas each edge caching device hopes that the price can
be as high as possible. Therefore, there is a competition
between the content provider and each edge caching device.
The competition interaction between the content provider and
edge caching devices is formulated as a Stackelberg game to
analyze the optimal strategies of all players. To formulate the
Stackelberg game, the utility functions of the content provider
and edge caching devices need to be designed, respectively.

A. Utility Function of Content Provider

The utility function of the content provider is first intro-
duced. As the content provider wants to cache contents on
edge caching devices, the utility of the content provider is
constituted by the utility regarding on each content cached on
one edge caching device. As such, the utility of the content
provider can be obtained by

Uo(g,q) =
I�

i=1

M�
m=1

uo(gi,m , qi,m ), (4)

where uo(gi,m , qi,m) is the content provider’s utility to cache
content m on edge caching device i . g is the payment
strategy of the content provider. q is the vector on qualities
of secure caching services from all edge caching devices.
Here, the content provider adopts non-uniform payment policy,
where the payments for different contents on different edge
caching devices are different. Thus, the payment strategy can

be defined as

g=

⎡
⎢⎢⎢⎣

g1,1, g1,2, · · · , g1,M
g2,1, g2,2, · · · , g2,M
...

...
. . .

...
gI,1, gI,2, · · · , gI,M

⎤
⎥⎥⎥⎦=[g1,, g2, · · · , gI ]T, (5)

where T means matrix transposition and gi,m is the payment
for the secure caching service from edge caching device i on
content m. The vector on qualities of secure caching services
from all edge caching devices can be given by

q=

⎡
⎢⎢⎢⎣

q1,1, q1,2, · · · , q1,M
q2,1, q2,2, · · · , q2,M
...

...
. . .

...
qI,1, qI,2, · · · , qI,M

⎤
⎥⎥⎥⎦=[q1,,q2, · · · ,qI ]T, (6)

As the utility function of the content provider is defined as
the difference between the satisfaction and payment for secure
caching service, we have

uo(gi,m , qi,m ) = Fi,m (qi,m )− Ci,m (gi,m , qi,m ), (7)

where Fi,m (qi,m) is the satisfaction of the content provider
with the quality of secure caching service qi,m . Ci,m (gm, qi,m )
is the cost of the content provider to pay for the secure caching
service from edge caching device i on content m. Here, we use
the typical logarithmic function as the satisfaction, which has
been widely used in the resource allocation schemes [46].
Fi,m (qi,m ) can be defined by

Fi,m (qi,m) =
�
αri,m Ni (t) fm pm log(1 + qi,m ), qi,m ≥ 0,

ςri,m Ni (t) fm pmqi,m , qi,m = −1,

(8)

where α is the satisfaction parameter of secure content caching
and ς is the satisfaction loss parameter. Here α > 0 and
ς > 0. With Eq. (8), the content satisfaction parameter is
a piecewise function. If the quality of secure caching service
is larger than zero, the content provider can obtain positive
satisfaction. Otherwise, when the quality of secure caching
service is equal to -1, the content provider is cheated by the
edge caching device and has the negative satisfaction. Since
the content provider should pay for the secure caching services
of edge caching devices, the cost function Ci,m (gm, qi,m ) is
defined by

Ci,m (gi,m , qi,m ) =
�

gi,mθqi,m , qi,m ∈ [0, 1]
0, qi,m = −1,

(9)

where gi,m is payment for the highest-quality caching service
from edge caching device i on content m, i.e., qi,m = 1. θ
is the payment adjust parameter. From Eq. (9), the payment
to the edge caching device that does not participate content
caching or cheats the content provider is zero. With consider-
ation of all contents and edge caching devices, the utility of
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the content provider at time slot t is

Uo(g,q)

=
I�

i=1

M�
m=1

uo(gi,m , qi,m )

=
I�

i=1

M�
m=1

�
xi,m(αri,m Ni (t) fm pm log(1 + qi,m )− gmθqi,m)

+ (1 − xi,m )ςri,m Ni (t) fm pmqi,m

�
, (10)

where xi,m is the indictor function of edge caching device i
on content m, which can be obtained by

xi,m =
�

1, qi,m ∈ [0, 1]
0, qi,m = −1.

(11)

B. Utility Function of Edge Caching Device

The utility function of each edge caching device is based
on the payment offered from the content provider and the cost
to provide secure caching service for the content provider.
As such, the utility function of edge caching device is the
difference between the payment and the cost on secure caching
service. The utility function of the edge caching device i,∀i ∈
I, can be obtained by

Ui (qi , g) = Li (qi , g)−
i (qi ), (12)

where Li (qi , g) is the payment offered by the content provider
with the payment strategy g and the vector on qualities of
secure caching services on M contents qi . 
i (qi ) is the cost
function of the edge caching device i to provide secure caching
service for the content provider. If the edge caching device
provides high-quality secure caching service, it will receive
large payment. As such, the payment function is defined by

Li (qi , g) =
M�

m=1

Ci,m (gi,m , qi,m ), ∀i ∈ I. (13)

The cost function is also related to the quality of secure
caching service. If the quality of secure caching service is
high, the edge caching device needs much effort to guarantee
the securities of cached contents. As such, the cost function
of the edge caching device i can be obtained by


i (qi ) =
M�

m=1

ϕi,m (qi,m ), ∀i ∈ I, (14)

where ϕi,m (qi,m ) is the cost of the edge caching device i with
quality of secure caching service on content m, which can be
written by

ϕi,m (qi,m) =
�

ciυqi,m
2, qi ∈ [0, 1]

ψi , qi = −1,
(15)

where ci is the cost parameter of the edge caching device i
with the highest quality secure caching service. It means the
total cost of the edge caching device i to provide the highest-
quality secure caching service. υ is the adjustment parameter
for the edge caching device i . ψi is a fixed value that the

resource (e.g., power and bandwidth, etc.) consumption of
edge caching device i when it cheats the content provider.
Then, the utility of edge caching device i can be rewritten by

Ui (qi , g) = Li (qi , g)−
i (qi )

=
M�

m=1

ui,m (qi,m , gi,m ), (16)

where ui,m (qi,m , gi,m ) is the utility of edge caching device i
to securely cache content m. Here, we have

ui,m (qi,m , gi,m ) =
�

gi,mθqi,m − ciυqi,m
2, qi,m ∈ [0, 1]

−ψi , qi,m = −1.
(17)

C. Optimization Problems

With the above description, the interactions between the
content provider and edge caching devices are formulated as a
one-leader and multiple-followers Stackelberg game denoted
by G = {(o, 1, 2, · · · , I ); (g,q); (Uo,U1≤i≤I )}, where each
player wants to select the optimal strategy for maximizing
its utility. The content provider chooses the optimal payment
strategy g for maximizing its profit and edge caching device
i,∀i ∈ I determines the optimal qualities of secure caching
services qi to maximize its utility. As such, two optimization
problems are introduced.

Problem 1: The optimization problem for maximizing the
profit of the content provider can be formulated as

max
g

Uo(g,q),

s.t . gi,m ≥ 0, ∀i ∈ I,∀m ∈ M. (18)

Problem 2: The optimization problem for maximizing edge
caching device i ’s utility can be written as

max
qi,1,qi,2,··· ,qi,M

Ui (g,qi ),

s.t . qi,m = −1 or qi,m ∈ [0, 1],
∀i ∈ I, ∀m ∈ M. (19)

The objectives of both the content provider and edge
caching devices are to maximize their utilities. As such,
the problem defined in formula (18) is to determine the optimal
payment strategy for maximizing the utility of the content
provider in each time slot. It takes the number of mobile
users that require cached contents, content popularity, content
importance, and the qualities of caching services provided by
edge caching devices into consideration. The problem defined
in formula (19) is exploited to maximize the utility of each
edge node by determining the optimal strategy on the quality
of secure edge caching service, with the consideration of
payment and cost. The restriction of the problem in formula
(19) is that the quality of secure caching service cannot exceed
the range defined in the system model.

The objective of game G is to find the SE, from which
neither the leader (i.e., content provider) nor the followers
(i.e., edge caching devices) have incentives to deviate.

Definition: Let g∗ = {g∗
1,, g∗

2, · · · , g∗
I } be a solution for

problem 1, and q∗ = {q∗
1,q∗

2, · · · ,q∗
I } be a solution for
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problem 2. Then the point (g∗,q∗) is an SE for the proposed
Stackelberg game G if the following conditions are satisfied:

Uo(g∗,q∗) ≥ Uo(g,q∗), (20)

ui (g∗,q∗
i ) ≥ ui (g∗,qi ), ∀i ∈ I. (21)

Formula (20) and formula (21) mean that the optimal strategy
g∗ can offer the maximum utility for the content provider when
each edge caching device has determined its optimal strategy.
Similarly, with the optimal strategy g∗ given by the content
provider, the edge caching device i can obtain the largest
utility with the optimal quality of secure caching service q∗

i .

V. STATIC STACKELBERG GAME ANALYSIS

In this section, we analyze the optimal strategies of both
the content provider and edge caching devices with the static
Stackelberg game with one interaction, where the parameters
of the game are public knowledge to all players. The goal
of the Stackelberg analysis is to find the SE, where both
the content provider and edge caching devices determine
the optimal strategies and achieve the maximum utilities.
The backward induction method is exploited to analyze the
proposed game, where each follower is first analyzed, under
which the strategy of the leader is obtained. Namely, we first
analyze the edge caching devices’ decision processes to obtain
the optimal strategies on qualities of secure caching services.
Then, we investigate the optimal payment strategy of the
content provider. Indeed, we consider commercial caching
framework consisting of some content providers and multiple
edge caching devices, where the content provider purchases
secure caching services provided by these edge caching
devices. Specifically, the content provider first determines the
service payment to compensate for the cost of the associated
edge caching device, and each edge caching device chooses
the corresponding quality of secure caching service to make
profit. Apparently, the above iteration between the content
provider and edge caching devices conforms to the feature
of the Stackelberg game, where the content provider acts
as the leader to determine the payments and edge caching
devices are followers to make strategies on the qualities of
secure caching services. Especially, with the analysis of the
Stackelberg game, strategies of both the content provider and
edge caching devices can be obtained to maximize the profits
of both players.

A. The Optimal Strategy of Edge Caching Device

As contents are independent with each other in the network,
we first analyze the optimal decision of edge caching device
i on content m. From Eq. (9) and Eq. (15), Ci,m (0,−1) =
Ci,m (0, 0) = 0, whereas ϕi,m(−1) > ϕi,m(0) = 0. There-
fore, if the quality of secure caching service of each edge
caching device is evaluated, the utility of edge caching device
with cheating behavior is smaller than that without partic-
ipating in the secure content caching, i.e., ui,m (0,−1) =
−ψi < ui,m (0, 0). Accordingly, with zero-payment punish-
ment, the selfishness of each node can be efficiently avoided.

Then, we analyze the optimal strategy of each edge caching
device when the quality of secure caching service is larger than

zero. Here, the utility function of the edge caching device i
to securely cache content m can be rewritten by

ui,m (gi,m , qi,m ) = gmθqi,m − ciυqi,m
2, 0 < qi,m ≤ 1. (22)

The first order differential of edge caching device i ’s utility
with respect to qi,m is

∂ui,m (gi,m , qi,m )

∂qi,m
= gi,mθ − 2ciυqi,m , 0 < qi,m ≤ 1. (23)

The second order differential of the edge caching device i İ¯s
utility with respect to qi,m is

∂2ui,m (gi,m , qi,m )

∂qi,m
2 = −2ciυ < 0, 0 < qi,m ≤ 1. (24)

Based on Eq. (24), since the second order differential of edge

caching device i ’s utility ∂2ui,m (gi,m ,qi,m )

∂qi,m
2 is smaller than zero,

the first order differential of edge caching device i ’s utility
∂ui,m (gi,m ,qi,m )

∂qi,m
is a monotonic decreasing function, where we

can have

lim
qi,m →0

∂ui,m(gi,m , qi,m )

∂qi,m
= gi,mθ > 0. (25)

lim
qi,m →1

∂ui,m(gi,m , qi,m )

∂qi,m
= gi,mθ − 2ciυ. (26)

Here we consider two cases.
Case 1: High payment. If the payment of the content

provider is high, i.e., gi,m ≥ 2ciυ
θ , we can have

lim
qi,m →1

∂ui,m(gm, qi,m )

∂qi,m
= gmθ − 2ciυ ≥ 0. (27)

The first order differential of edge caching device i ’s utility
is not less than zero with 0 < qi,m ≤ 1, so that the utility
function of edge caching device ui,m (gi,m , qi,m ) is a monotone
increasing function. The maximum utility can be obtained at
the end of qi,m interval and the optimal strategy of the edge
caching device i is qi,m

∗ = 1. The maximum utility of the
edge caching device i can be obtained by

ui,m
∗(gi,m , qi,m) = gi,mθ − ciυ, gi,m ≥ 2ciυ

θ
. (28)

Case 2: Low payment. If the payment of the content provider
is low, i.e., 0 < gm <

2ciυ
θ , we can have

lim
qi,m →1

∂ui,m(gi,m , qi,m )

∂qi,m
= gi,mθ − 2ciυ < 0. (29)

Based on Eq. (29), the first order differential of edge
caching device i ’s utility is first larger than zero and then
smaller than zero. Accordingly, the utility function of edge
caching device i first increases and then decreases with qi,m ,
i.e., ui,m (gi,m , qi,m) is a strictly concave function, where
there exists a maximum utility for edge caching device i . The
optimal strategy of edge caching device i can be obtained by
solving the following equation.

∂ui,m (gi,m , qi,m )

∂qi,m
= gi,mθ − 2ciυqi,m = 0. (30)
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Then, the optimal strategy of edge caching device i on quality
of secure caching service is

qi,m
∗ = gi,mθ

2ciυ
. (31)

Therefore, the optimal strategy of edge caching device i on
content m is

qi,m
∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, gi,m ≥ 2ciυ

θ
,

gmθ

2ciυ
, 0 < gi,m ≤ 2ciυ

θ
,

0, gi,m = 0.

(32)

The maximal utility of edge caching device i with the optimal
strategy is

ui,m
∗(gi,m , qi,m ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gi,mθ − ciυ, gi,m ≥ 2ciυ

θ
,

(gi,mθ)
2

4ciυ
, 0 < gi,m <

2ciυ

θ
,

0, gi,m = 0.

(33)

B. The Optimal Strategy of Content Provider

Since the content provider adopts non-uniform payment
strategy, we can analyze the policy for each content with one
edge caching device. Based on the optimal quality of caching
service strategy in Eq. (32), if gi,m > 2ciυ

θ , the utility of the
content provider with qi,m

∗ = 1 can be rewritten as

uo(gi,m , qi,m )

= αri,m Ni (t) fm pm log 2 − gi,mθ, gi,m ≥ 2ciυ

θ
. (34)

Since the utility in Eq. (34) is a monotonic decreasing function,
the optimal payment strategy of the content provider can be
obtained by

gi,m
∗ = 2ciυ

θ
. (35)

The maximum utility of the content provider is

uo
∗(qi,m , gi,m) = αri,m Ni (t) fm pm log 2 − 2ciυ. (36)

If 0 < gi,m < 2ciυ
θ , the utility of the content provider with

qi,m
∗ = gi,m θ

2ciυ
can be rewritten as

uo(qi,m , gi,m)

= αri,m Ni (t) fm pm log(1 + gi,mθ

2ciυ
)− gi,mθ

gi,mθ

2ciυ
,

s.t . 0 < gi,m <
2ciυ

θ
. (37)

The first order differential of the content provider’s utility with
respect to gi,m is

∂uo(qi,m , gi,m)

∂gi,m
= αri,m Ni (t) fm pmθ

2ciυ + gi,mθ
− gi,mθ

2

ciυ
. (38)

The second order differential of the content provider’s utility
with respect to gi,m is

∂2uo(qi,m , gi,m)

∂gi,m
2 = −αri,m Ni (t) fm pmθ

2

(2ciυ + gi,mθ)
2 − θ2

ciυ
< 0. (39)

Since the second order differential in Eq. (39) is smaller
than zero, the utility function of the content provider is a
strict concave function, where the maximum value can be
obtained by solving ∂uo(qi,m ,gm)

∂gm
= 0 with KKT conditions.

Then, the optimal payment strategy of content provider on the
content m for edge caching device i is

gi,m
∗ =

⎧⎪⎪⎨
⎪⎪⎩

2ciυ

θ
, αri,m Ni (t) fm pm − 8ciυθ ≥ 0,�

�i,m − ciυθ

θ2 , αri,m Ni (t) fm pm − 8ciυθ < 0.

(40)

Here, �i,m = ci
2υ2θ2 + ciυθαri,m Ni (t) fm pm . The maximum

utility of the content provider with the optimal payment
strategy in Eq. (40) can be calculated by

uo
∗(gm, qi,m )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Zi,m log 2 − 2ciυ, Zi,m − 8ciυθ ≥ 0,

Zi,m log(1 +
�
�i,m − ciυθ

2ciυθ
)

− Zi,m +2ciυθ − 2
�
�i,m

2θ
,

Zi,m −8ciυθ < 0.

(41)

where Zi,m = αri,m Ni (t) fm pm . Zi,m can been seen as the
value of the content m under the coverage of edge caching
device i . From Eq. (40) and Eq. (32), if the value of the content
is high or the cost parameter is low, the content provider
has a high willingness to motivate edge caching devices to
provide the highest-quality secure caching service. Otherwise,
the content provider will select payment strategy based on the
cost of the edge caching device to obtain a satisfied quality of
secure caching service.

With the above game analysis, the SE between the content
provider and edge caching device i on content m can be given
by

(gi,m
∗, qi,m

∗)

=

⎧⎪⎪⎨
⎪⎪⎩
(
2ciυ

θ
, 1), Zi,m − 8ciυθ ≥ 0,

(

�
�i,m − ciυθ

θ2 ,

√
�i,m −ciυθ

2θciυ
), Zi,m − 8ciυθ < 0.

(42)

VI. Q-LEARNING BASED OPTIMAL STRATEGY DECISION

FOR DYNAMIC STACKELBERG GAME

In this section, we analyze the dynamic Stackelberg game
between the content provider and edge caching devices, where
the interactions between the content provider and edge caching
devices are repeatedly conducted over time. In the static
Stackelberg game, the parameters (e.g., satisfied parameters,
cost parameter, etc.) for utilities of both the content provider
and edge caching devices should be public knowledge, while
these parameters, in reality, are private and cannot be fully
known by all players. Alternatively, the content provider can
conduct several interactions with the edge to search the optimal
strategies for them through trial and error. The Q-learning can
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Algorithm 1 Q-Learning Based Payment Strategy Searching
Algorithm
1: Initialize q = 0, Q(s,q) = 0, V (s) = 0, ϑ , � , g =

{hgmax/H }0≤h≤H

2: for t = 1, 2, 3, · · · do
3: Evaluate the number of available edge caching devices

I (t) and that of mobile users within the coverage of each
available edge caching device.

4: for i = 1 : I (t) do
5: for m = 1 : M do
6: st

i,m = qt−1
i,m .

7: Select and perform gt
i,m ∈ g via the ε-greedy algo-

rithm.
8: Send payment message with gt

i,m to edge caching
device i .

9: Observe and evaluate the quality of secure caching
service qt

i,m .
10: Pay edge caching device i with gt

i,mθqt
i,m .

11: Calculate uo(qt
i,m , gi,m

t ).
12: Update Q(st

i,m , gt
i,m) via Eq. (43).

13: Update V (st
i,m ) via Eq. (44).

14: end for
15: end for
16: end for

be utilized to model the content provider and edge caching
devices under multiple interactions.

A. Q-Learning Based Payment Strategy Decision

In general, a high payment for the secure caching ser-
vice decreases the content provider’s immediate utility but
it stimulates more edge caching devices to provide secure
caching services in the future. Apparently, the current payment
strategy of the content provider affects the future secure
caching services and the future profit. The payment decision
in the dynamic game can be formulated as a MDP, where
reinforcement learning algorithm is an effective approach to
achieve the optimal strategy. The Q-learning is a typical
reinforcement learning mode that can be employed by the con-
tent provider to derive the optimal payment strategy without
knowing the caching parameters of edge caching devices for
the game. The content provider applies Q-learning process
to obtain the optimal payment strategy, where the security
quality state of the edge caching device is observed by the
content provider at time slot t . Here, the state is denoted
by st

o, where t ∈ {1, 2, · · · , T }. The system state consists
of the previous quality of secure caching service from each
edge caching device, i.e., st

o = qt−1. The Q-learning based
payment decision process for the content provider is shown
in Algorithm 1. For simplicity, the content provider quantizes
the payment into H + 1 level and chooses the payment level
g ∈ {hgmax/H }0≤h≤H , where gmax is the maximum payment.
In the Algorithm 1, the Q function in the Q-learning is
denoted by Q(si,m , gi,m ), which means the expected long-
term discounted utility for the state-action pair (si,m , gi,m).

Algorithm 2 Q-Learning Based Quality of Secure Caching
Service Strategy Searching Algorithm

1: Initialize g = 0, Q̂(s,q) = 0, ϒ(s) = 0, �, ρ, q =
{k/K }0≤k≤K

2: for t = 1, 2, 3, · · · do
3: Evaluate the number of available edge caching devices

I (t) and that of mobile users within the coverage of each
available edge caching device.

4: for i = 1 : I (t) do
5: for m = 1 : M do
6: ŝt

i,m = gt−1
i,m .

7: Select and perform qt
i,m ∈ q via the �-greedy algo-

rithm.
8: Provide secure caching service with qt

i,m for the
content provider.

9: Observe the payment of the content provider gt
i,m .

10: Calculate ui,m(qt
i,m , ŝt

i,m ).
11: Update Q̂(ŝt

i,m , qt
i,m ) via Eq. (46).

12: Update ϒ(ŝt
i,m ) via Eq. (47).

13: end for
14: end for
15: end for

To obtain the optimal strategy, the Q function is updated over
time slot according to the iterative Bellman equation:

Q(st
i,m , gi,m

t ) = (1 −�)Q(st
i,m , gt

i,m )

+�(uo(g
t
i,m , qi,m

t )+ ϑV (st+1
i,m )) (43)

where st+1
i,m is the new state of the edge caching device i on

content m at time slot t+1 from st
i,m with payment action gt

i,m .
ϑ is the discount factor indicating the myopic views of the
content provider regarding the future reward, and � ∈ (0, 1]
is the learning rate. uo(qi,m

t , gt
i,m) is the utility of the content

provider with the payment gt
i,m and the quality of secure

caching service qi,m
t , which is also the immediate reward of

the payment action gt
i,m . The V (·) denotes the highest value

of the Q function, which is calculated by

V (st+1
i,m ) = max

gi,m
Q(st+1

i,m , gt+1
i,m ). (44)

Since the tradeoff between the exploitation and exploration
has an important effect on the convergence performance,
the ε-greedy algorithm is applied for the content provider
to choose the optimal strategy and avoid staying in the local
optimization. More specifically, the “optimal” payment gi,m

∗
is chosen with a high probability 1−ε, and the other payment
strategies are randomly chosen with a very small probability
ε. Thus the payment action of the content provider for content
m with edge caching device i at time t is given by

Pr{gi,m
t = g∗

i,m }

=
�

1 − ε, g∗
i,m = arg max Q(st

i,m , gi,m )

ε, otherwise.
(45)
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B. Q-Learning Based Quality of Secure Caching Service
Strategy Decision

Since each edge caching device has no knowledge on
the payment parameter of the content provider, the edge
caching device cannot immediately find the optimal strategy
to maximize its utility. Therefore, the edge caching devices
also apply Q-learning to derive the optimal strategy on quality
of secure caching service in the dynamic Stackelberg game
consisting of the repeated interactions between the content
provider and edge caching devices. The state in the Q-learning
of each edge caching device is the payment of the content
provider. Namely, the state for the edge caching device i
on content m consists of previous payment offered by the
content provider at time t , i.e., ŝt

i,m = gt−1
i,m . As summarized in

Algorithm 2, the Q-learning based optimal quality of secure
caching service strategy is achieved. For simplicity, the quality
of secure caching service is quantized into K level by the edge
caching devices, and the quality of secure caching service is
chosen with qi,m ∈ {k/K }0≤k≤K . The Q function in the Q-
learning for edge caching device i on securely caching content
m is denoted by Q̂(ŝt

i,m , qi,m
t ), which is updated based on the

iterative Bellman equation as follows.

Q̂(ŝt
i,m , qi,m

t ) = (1 − �)Q̂(ŝt
i,m , qt

i,m )

+ρ(ui,m(q
t
i,m , gt

i,m)+ ρϒi,m (q
t+1
i,m )) (46)

where ŝt
i,m is the payment state of the content provider at time

slot t + 1 from ŝt
i,m with quality action qt

i,m . ρ is the discount
factor indicating the myopic views of the edge caching device
regarding the future reward, and � ∈ (0, 1] is the learning rate.
ui,m (qi,m

t , gi,m
t ) is the utility of the edge caching device with

the payment gt
i,m and the quality of secure caching service

qi,m
t , which is also the immediate reward of the quality action

qi,m
t . The ϒ(·) denotes the highest value of the Q function,

which is calculated by

ϒ(ŝt+1
i,m ) = max

qi,m
Q̂(ŝt+1

i,m , qt+1
i,m ). (47)

The �-greed policy is applied for the edge caching device
to choose the quality of secure caching service for the content
provider based on payment state, with the consideration of
the tradeoff the learning process between the exploitation and
exploration. More specifically, the optimal quality strategy is
chosen with a high probability 1 − �, while the other quality
strategies are randomly chosen a small probability of �. Thus
the quality action of the edge caching device i for content m
at time t is given by

Pr{qt
i,m = q∗

i,m}

=
�

1 − �, q∗
i,m = arg max Q̂(ŝt

i,m , qi,m )

�, otherwiese
(48)

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to verify
the performance of the proposed scheme. The simulation setup
is introduced, followed by the numerical results and analysis.

Fig. 2. The utility of the content provider vs. the cost parameter of the edge
caching device.

A. Simulation Setup

In our simulation scenario, there is a 500 × 500 m2 terrain
with 10 edge caching devices and one content provider. The
cost parameter of each edge caching device is uniformly
distributed in [0.5, 1.5]. The number of mobile users within
each edge caching device is uniformly distributed in [50, 100].
The ratio of mobile users requesting each content is uniformly
distributed in [0, 1]. The adjustment parameter for the payment
is 1. The adjustment parameter for the cost of each edge
caching device is 1. The satisfaction parameter is 20. For the
Q-learning, learning rate of the content provider is� = 1 [47].
The discount factor of the content provider is ϑ = 0.8 [47].
The simulation time is T = 8000. Other parameters are
γ = 1.2, β = 1 [24].

To show the superiority of the proposed scheme, following
two conventional schemes are employed for comparisons.

• Random Scheme [48]. In random scheme, the content
provider selects a random payment strategy and each edge
caching device randomly determines the quality of secure
caching service.

• Auction Scheme [14]. In this scheme, each content is
cached on one edge caching device which is selected
based on auction game without consideration of quality of
secure caching service. Besides, the edge caching device
randomly selects the quality of secure caching service.

B. Numerical Results

Fig. 2 shows the average utility of the content provider
with the cost parameter of each edge caching device. In this
simulation, the experiment is repeated with 10,000 times.
All edge caching devices have the same cost parameter.
In addition, the number of edge caching devices in the network
increases from 10 to 20. The cost parameter increases from
0.5 to 1.3. From Fig. 2, it can be observed that the utility of the
content provider decreases with the cost parameter of the edge
caching device. The reason is that the payment of the content
provider for the secure caching service is large if the cost
parameter of each edge caching device is high. In addition,
with the different numbers of edge caching devices, the utility
of the content provider becomes equal when the cost parameter
of the edge caching device increases. The reason is that the
content provider has no willingness to stimulate edge caching
device to provide the highest-quality of secure caching service
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Fig. 3. The quality of secure caching service vs. the cost parameter of the
edge caching device.

Fig. 4. The average payment of the content provider vs. the cost parameter
of the edge caching device.

when the cost parameter increases, whereby the utility of the
edge caching device decreases.

Fig. 3 shows the quality of secure caching service with
the cost parameter of the edge caching device. To show the
quality of secure caching service, three contents are compared.
With the decreasing order of requesting times among all
contents, the indexes of three contents are 1, 	M/2
, and
M , respectively. Here 	·
 represents the floor function. From
Fig. 3, it can be observed that the quality of secure caching
service for each content decreases with the cost parameter
of the edge caching device. The reason is that each edge
caching device can decrease the quality of secure caching
service to reduce cost since the high cost parameter increases
the power consumption. In addition, as the popularity of the
content with τ (m) = 1 is the largest, the content provider has
high willingness to offer a high payment for stimulating high-
quality secure caching services from edge caching devices.
Therefore, the decrease rate of content with τ (m) = 1 is lower
than that of other contents with larger indexes.

Fig. 4 is the payment of the content provider for secure
caching services with the cost parameter of each edge caching
device. In the simulation, three types of contents are used to
show results, which are τ (m) = 1, 2, 3, respectively. Other
settings are unchanged. From Fig. 4, it can be seen that the
payment for the secure caching service increases with the cost
parameter of the secure caching service. The reason is that the
content provider has to pay more for obtaining stable quality of
secure caching service with the increase of the cost parameter.
In addition, it can be observed that the payment for securely
caching the most popular content with τ (m) = 1 increases
fastest compared with those for contents with lower popularity.

Fig. 5. Q-learning process for the content provider and edge caching devices.

Fig. 5 shows the Q-learning based strategies decision
processes for the content provider and edge caching devices.
In the simulation, we use one edge caching device to show the
result, whose cost parameter is 0.5 and the number of mobile
users is 50 within the edge caching device. Every content is
requested by all mobile users under an edge caching device,
i.e., ri,m = 1,∀i ∈ I,∀m ∈ M. The importance of the content
is uniformly distributed. The experiment is repeated with
1000 times. Other settings are unchanged. From Fig. 5, we can
observe that both the utilities of the content provider and the
edge caching device reach to be stable with some time slots,
where the SE of the dynamic game is obtained. In addition,
the average utility of the content provider increases, while the
average utility of the edge caching device decreases over time.
The reason is that the content provider controls the strategy
decision of the edge caching device by the payment. If the
payment is high, the edge caching device which wants to gain
more profits will provide higher quality secure caching and
reduce the utility.

Fig. 6 is the evolution on payment and quality of secure
caching service over time. From Fig. 6, it can be observed that
the proposed scheme can efficiently stimulate edge caching
device to provide high-quality secure caching service with low
payment. Specifically, in Fig. 6 (a), the payment of the content
provider decreases over the time. The reason is that the initial
high payment has stimulated the secure caching service with
high quality, where the content provider can reduce payment to
improve utility. In Fig. 6 (b), according to the payment strategy
of content provider, each edge caching device continuously
seeks the optimal quality of secure caching service towards the
maximum utility of edge caching device. The quality of secure
caching service for each edge caching device first increases
and then reaches to be stable.

Fig. 7 is the secure caching service ratio over time. In the
simulation, three types of qualities on secure caching services
are used, which are 0, 0.5, 1, respectively. From Fig. 7, we can
observe that the ratio of high-quality secure caching ratio
increases over time. Namely, the high-quality caching service
is more provided to the content provider, while the low quality
caching service is suppressed. For example, from time slot 0 to
1000, the ratio of secure caching service with q = 1 increases
50%, while that with q = 0 decreases 50%.

Fig. 8 is the comparison between the proposed scheme with
other two schemes about the average quality of secure caching
service. Here, the cost parameter changes from 0.5 to 1.3.
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Fig. 6. Evolutions of payment and quality on secure caching service over time.

Fig. 7. Secure caching service ratio vs. time slot.

Fig. 8. The comparison of the proposed scheme with conventional schemes
on the quality of secure caching service, when the cost parameter of edge
caching device changes.

From Fig. 8, it can be observed that the proposed scheme
outperforms other two schemes. The reason is that the quality
of caching service is randomly selected in the random scheme.
In the auction scheme, the serving edge caching device is
selected based on the price, without consideration of the
security quality. In addition, since there is no punishment,
the selfish edge caching devices may cheat the content provider
without providing caching services. In the proposed scheme,
with the Q-learning for the dynamic game, the optimal quality
of caching can be obtained.

Fig. 9 is the comparison between the proposed scheme and
other two schemes about the utility of the content provider.
Here, the number of edge caching devices changes from
10 to 18. From Fig. 9, it can be seen that the proposed scheme
obtains the higher average utility of the content provider
than that of the other two schemes. The reason is that the
payment policy and quality strategy are randomly determined
in random scheme, where the utility is not maximum. In the

Fig. 9. The comparison of the proposed scheme with conventional schemes
on the utility of the content provider, when the number of edge caching devices
changes.

auction scheme, the selected edge caching device may be
selfish to cheat the content provider, where the utility of the
content provider may be negative. In the proposed scheme,
with zero payment punishment, the selfishness of edge caching
device can be avoided and the optimal strategies of the
content provider and edge caching devices are determined by
Q-learning with analyzing the dynamic Stackelberg game.

Fig. 10 shows the comparison of the proposed scheme
with other two conventional schemes on the average utility
of the content provider, where the number of mobile users
within the coverage of each edge caching device changes
from 50 to 90. From Fig. 10, we can see that the proposed
scheme outperforms the other two schemes. In the random
scheme, as the payment and qualities of caching services are
randomly determined, the content provider cannot obtain the
optimal utility. In the auction scheme, though the payment is
small, the qualities of caching services are low, which makes
a low utility of the content provider. In the proposed scheme,
considering the number of mobile users that requires popular
content, the optimal payment and qualities of secure caching
services are achieved based on the game analysis.

Fig. 11 shows the comparison of the proposed scheme with
the other two conventional schemes on the secure ratio of
the cached content, where the cost parameter of each edge
caching device changes from 0.5 to 1.3. The secure ratio of
the cached content is the ratio of attacks that are successfully
defended by edge caching devices to all attacks conducted
during the simulation time. From Fig. 11, it can be observed
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Fig. 10. The comparison of the proposed scheme with conventional schemes
on the utility of the content provider, when the number of mobile users within
the coverage of the edge caching devices changes.

Fig. 11. The comparison of the proposed scheme with conventional schemes
on the secure ratio of the cached content, when the cost parameter of edge
caching device changes.

that the proposed scheme obtains the highest secure ratio
among the three schemes. The reason can be explained as
follows. In the random scheme, the quality of secure caching
service is randomly determined by edge caching nodes, where
the cached contents are easily compromised when the quality
of the secure caching service is low. In the auction scheme,
the edge caching device with the low caching price is selected
as a winner, where the quality of secure caching service is
also low. In the proposed scheme, the content provider jointly
considers its demand and payment to motivate edge caching
devices to provide high-quality caching services.

VIII. CONCLUSION

This paper has presented a game theory and reinforcement
learning based secure edge caching scheme in MSNs. Specif-
ically, to motivate the participation of edge caching devices,
the interactions between the content provider and edge caching
devices are formulated as a Stackelberg game to stimulate
edge caching devices to provide high-quality caching services.
The static Stackelberg game is first analyzed to achieve SE
for the optimal strategies of both the content provider and
edge caching devices, where all players in the game can
obtain the maximum utilities. Especially, the zero payment
mechanism is adopted to suppress the selfish behaviors of edge
caching devices. Furthermore, the Q-learning, a typical type of
reinforcement learning mode, is exploited to obtain the optimal
strategy for each party in the dynamic network scenarios,
without the awareness of the edge caching devices’ secure

caching model parameters and the content provider’s payment
model parameters. At last, the simulation results show that
the proposed scheme can efficiently motivate edge caching
devices to provide high-quality secure caching services and
improve the content provider’s utility. For the future work,
the quality of secure caching service evaluation model and
deep reinforcement learning method for accelerating learning
process will be investigated.
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